160 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
人工智能技术的颠覆性在经济上表现为创造性破坏,具有显著提升生产率、冲击就业和扩大收入不均等的双刃剑效应,以及加重结构性就业矛盾和过大收入差距的风险。这相应提出制度需求,迫切要求公共就业服务更加积极、社会保障制度更加普惠。鉴于传统社会保障制度面临对象识别、制度适应和技术红利共享等方面的难题,完善社会保障制度的方向和路径,应是从更接近于“剩余型”向更接近于“制度型”的转变。相应地,公共财政特别是社保筹资模式也需要创新理念,探索以“先分配,助增长”为特征的跨代收支平衡模式,以借助人工智能所达到的更高生产率支撑民生建设。这包括从“对物投资”转向更多“对人投资”,提高政府社会性支出占GDP的比重;应对结构性就业矛盾,以普惠保障推动实现老有所养;通过社保兜底消除居民消费的后顾之忧,释放强大内需潜力。
Abstract:The disruptive nature of artificial intelligence(AI) manifests as creative destruction in the economy, with a double-edged impact of significantly improving productivity, reshaping employment, and widening income inequality, as well as heightening the risks of structural employment contradictions and excessive income gaps. This in turn raises institutional demands, calling for more proactive public employment services and a more inclusive social security system. Traditional social security systems face challenges such as identifying target populations, adapting institutional frameworks, and equitably sharing the dividends of technological progress. Therefore, the direction for improvement should involve a transition from a "residual-type" model toward a more "institutionalized" model. Innovative approaches are also required in public finance, particularly in social security financing, by exploring a cross-generational balance of revenues and expenditures characterized by "pre-distribution to promote growth." Higher productivity enabled by AI should be harnessed to support livelihood improvements. This includes shifting from material investment to human capital investment and increasing the share of government social spending in GDP; addressing structural employment contradictions and promoting elderly care through universal and inclusive security; and eliminating residents' concerns about consumption through social security, thereby unlocking strong domestic demand potential.
(1) Alan M.Turing,"Computing Machinery and Intelligence,"Mind,1950,LIX(236).
(2)参见李开复、陈楸帆:《AI未来进行式》,浙江人民出版社,2022年。
(1)参见凯文·凯利:《2049:未来10000天的可能》,中信出版集团,2025年。
(2)参见戴维·奥托等:《AI时代的工作》,中信出版集团,2025年。
(3) Erik Brynjolfsson,Gabriel Unger,"The Macroeconomics of Artificial Intelligence,"Finance and Development,2023,60(4).
(1) Daron Acemoglu,Pascual Restrepo,"The Wrong Kind of AI?Artificial Intelligence and the Future of Labour Demand,"Cambridge Journal of Regions,Economy and Society,2020,13.
(2)蔡昉:《引领人工智能创造更多更高质量就业》,《劳动经济研究》2025年第3期。
(3) Guru Madhavan,"It's Time to Retire the Word'Technology',"Financial Times,30 July 2025.
(1)蔡昉:《面向未来的人力资本培养模式》,《学习时报》,2025年6月6日第1版。
(2) Ajay Agrawal,et al.,"Do We Want Less Automation?AI May Provide a Path to Decrease Inequality,"Science,2023,381(6654).
(1) Anjli Raval,"Disrupted or Displaced?How AI Is Shaking Up Jobs,"Financial Times,9 June 2025.
(2)参见蔡昉:《成长的烦恼:中国迈向现代化进程中的挑战及应对》,中国社会科学出版社,2021年。
(1)参见理查德·蒂特马斯:《社会政策十讲》,吉林出版集团,2011年;哥斯塔·埃斯平-安德森:《福利资本主义的三个世界》,商务印书馆,2010年。
(1)蔡昉:《刘易斯转折点--中国经济发展阶段的标识性变化》,《经济研究》2022年第1期。
(1) Daron Acemoglu1,Pascual Restrepo,"A Task-based Approach to Inequality,"Oxford Open Economics,2024,(3).
(2) David H.Autor,David Dorn,"The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market,"American Economic Review,2013,103(5).
(1)我把与此相关的几个研究结论称为“阿西莫格鲁事实”。参见蔡昉:《人工智能时代的就业挑战》第二章“理解就业挑战的性质”,中信出版集团,2025年,第57-63页。
(2)参见UNU-WIDER,World Income Inequality Database (WIID),Version 30 June 2022,https://doi.org/10.35188/UNU-WID-ER/WIID-300622.
(1)蔡昉:《破除城乡二元结构》,浙江人民出版社,2025年,第203页。
(1)约瑟夫·斯蒂格里茨:《21世纪的福利国家》,《比较》2023年第1期。
(1)参见蔡昉、贾朋:《构建中国式福利国家的理论和实践依据》,《比较》2022年第3辑。
(2)吴舒钰等:《教育回报率显著高于资本回报率的实证分析--基于1978年以来我国宏观教育回报率的测算》,《教育研究》2024年第3期。
(1)瑞·达里欧:《原则:应对变化中的世界秩序》,中信出版集团,2022年,第79页。
基本信息:
DOI:
中图分类号:D632.1;TP18
引用信息:
[1]蔡昉.人工智能时代的社会保障:理念更新与制度建设[J].社会保障评论,2025,9(05):1-16.
基金信息: